Reconstitution of recombination-dependent DNA synthesis in herpes simplex virus 1.
نویسندگان
چکیده
The repair of double-strand DNA breaks by homologous recombination is essential for the maintenance of genome stability. In herpes simplex virus 1, double-strand DNA breaks may arise as a consequence of replication fork collapse at sites of oxidative damage, which is known to be induced upon viral infection. Double-strand DNA breaks are also generated by cleavage of viral a sequences by endonuclease G during genome isomerization. We have reconstituted a system using purified proteins in which strand invasion is coupled with DNA synthesis. In this system, the viral single-strand DNA-binding protein promotes assimilation of single-stranded DNA into a homologous supercoiled plasmid, resulting in the formation of a displacement loop. The 3' terminus of the invading DNA serves as a primer for long-chain DNA synthesis promoted by the viral DNA replication proteins, including the polymerase and helicase-primase. Efficient extension of the invading primer also requires a DNA-relaxing enzyme (eukaryotic topoisomerase I or DNA gyrase). The viral polymerase by itself is insufficient for DNA synthesis, and a DNA-relaxing enzyme cannot substitute for the viral helicase-primase. The viral single-strand DNA-binding protein, in addition to its role in the invasion process, is also required for long-chain DNA synthesis. Form X, a topologically distinct, positively supercoiled form of displacement-loop, does not serve as a template for DNA synthesis. These observations support a model in which recombination and replication contribute toward maintaining viral genomic stability by repairing double-strand breaks. They also account for the extensive branching observed during viral replication in vivo.
منابع مشابه
Replication Characteristics of Herpes Simplex Virus Type-1 (HSV-1) Recombinants in 3 Types of Tissue Cultures
A complication in the analysis of the role of ICP34.5 gene in the herpes simplex virus type-1 (HSV-1) lifecycle is the presence of overlapping antisense gene, open reading frame P (ORF P), which is also deleted in HSV-1 ICP34.5 negative mutants. A HSV-1 wild type strain (17+) ICP34.5/ORF P deletion mutant (1716) is totally avirulent in animal models and impaired in a number of in vitro function...
متن کاملVaricella Zoster Virus (VZV) Origin-Dependent Plasmid Replication in the Presence of the Four Overlapping Cosmids Comprising the Complete Genome of VZV
The Varicella-Zoster Virus (VZV) genome contains both cis-acting and trans-acting elements, which are important in viral DNA replication. The cis-acting elements consist of two copies of oriS, and the trans-acting elements are those genes whose products are required for virus DNA replication. It has been shown that each of the seven genes required for ori-dependent DNA synthesis of Herpes Simpl...
متن کاملDetection of Herpes Simplex Virus DNA in Pseudoexfoliation Syndrome
Background: Pseudoexfoliation syndrome is one of the most common identifiable causes of open angle glaucoma. It has unknown etiology and pathogenesis. Infection, possibly viral, is one of the proposed pathogenic mechanisms in this condition. In the present study the presence of herpes simplex virus (HSV) in specimens of anterior lens capsule of patients with pseudoexfoliation syndrome has been ...
متن کاملReplication and recombination of herpes simplex virus DNA.
Replication of herpes simplex virus takes place in the cell nucleus and is carried out by a replisome composed of six viral proteins: the UL30-UL42 DNA polymerase, the UL5-UL8-UL52 helicase-primase, and the UL29 single-stranded DNA-binding protein ICP8. The replisome is loaded on origins of replication by the UL9 initiator origin-binding protein. Virus replication is intimately coupled to recom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 18 شماره
صفحات -
تاریخ انتشار 2003